Organic redox compounds are attractive cathode materials in aqueous zinc-ion batteries owing to their low cost, environmental friendliness, multiple-electron-transfer reactions, and resource sustainability. However, the realized energy density is constrained by the limited capacity and low voltage. Herein, copper-tetracyanoquinodimethane (CuTCNQ), an organic charge–transfer complex is evaluated as a zinc-ion battery cathode owing to the good electron acceptation ability in the cyano groups that improves the voltage output. Through electrochemical activation, electrolyte optimization, and adoption of graphene-based separator, CuTCNQ-based aqueous zinc-ion batteries deliver much improved rate performance and cycling stability with anti-self-discharge properties. The structural evolution of CuTCNQ during discharge/charge are investigated by ex situ Fourier transform infra-red (FT-IR) spectra, ex situ X-ray photoelectron spectroscopy (XPS), and in situ ultraviolet visible spectroscopy (UV–vis), revealing reversible redox reactions in both cuprous cations (Cu+) and organic anions (TCNQx-1), thus delivering a high voltage output of 1.0 V and excellent discharge capacity of 158 mAh g−1. The remarkable electrochemical performance in Zn//CuTCNQ is ascribed to the strong inductive effect of cyano groups in CuTCNQ that elevated the voltage output and the graphene-modified separator that inhibited CuTCNQ dissolution and shuttle effect in aqueous electrolytes.
CITATION STYLE
Zhang, L., Chen, Y., Jiang, Z., Chen, J., Wei, C., Wu, W., … Xu, Q. (2024). Cation-Anion Redox Active Organic Complex for High Performance Aqueous Zinc Ion Battery. Energy and Environmental Materials, 7(1). https://doi.org/10.1002/eem2.12507
Mendeley helps you to discover research relevant for your work.