Defect Parameters Contour Mapping: A Powerful Tool for Lifetime Spectroscopy Data Analysis

9Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Temperature- and injection-dependent lifetime spectroscopy (TIDLS) is extensively used for the characterization of defects in silicon material for photovoltaic applications. By coupling TIDLS measurements with Shockley–Read–Hall recombination models, the most important defects’ parameters can be assessed including the defect energy level Et and the capture cross section ratio k. However, while proving extremely helpful in a variety of studies aiming at the characterization of contaminated silicon, a generalized approach for the analysis of industrially-relevant material has not yet emerged. In this contribution, we examine in detail the recently introduced defect parameters contour mapping (DPCM) methodology for TIDLS data analysis as a tool for direct visualization of possible lifetime limiting defects. Herein, we showcase the DPCM method's potential by applying it to two representative case studies selected from literature and we demonstrate that, even when data are scarce, invaluable information is obtained in an easy and intuitive way without any a priori assumption needed. We then apply the DPCM method to simulated TIDLS data to evaluate the general characteristics of its response and the optimal conditions for its application. This analysis proves that the temperature dependence of lifetime is the most critical information required toward a really univocal identification of metal impurities.

Cite

CITATION STYLE

APA

Bernardini, S., Naerland, T. U., Coletti, G., & Bertoni, M. I. (2018). Defect Parameters Contour Mapping: A Powerful Tool for Lifetime Spectroscopy Data Analysis. Physica Status Solidi (B) Basic Research, 255(8). https://doi.org/10.1002/pssb.201800082

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free