Improving enzymes for biomass conversion: A basic research perspective

203Citations
Citations of this article
329Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The cost of enzymes for converting plant biomass materials to fermentable sugars is a major impediment to the development of a practical lignocellulosic ethanol industry. Research on enzyme optimization with the goal of reducing the cost of converting biomass materials such as corn stover into glucose, xylose, and other sugars is being actively pursued in private industry, academia, and government laboratories. Under the auspices of the Department of Energy Great Lakes Bioenergy Research Center, we are taking several approaches to address this problem, including "bioprospecting" for superior key enzymes, protein engineering, and high-level expression in plants. A particular focus is the development of synthetic enzyme mixtures, in order to learn which of the hundreds of known enzymes are important and in what ratios. A core set comprises cellobiohydrolase, endoglucanase, β-glucosidase, endoxylanase, and β-glucosidase. Accessory enzymes include esterases, proteases, nonhydrolytic proteins, and glycosyl hydrolases that cleave the less frequent chemical linkages found in plant cell walls. © Springer Science+Business Media, LLC. 2010.

Cite

CITATION STYLE

APA

Banerjee, G., Scott-Craig, J. S., & Walton, J. D. (2010). Improving enzymes for biomass conversion: A basic research perspective. Bioenergy Research, 3(1), 82–92. https://doi.org/10.1007/s12155-009-9067-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free