Chasing Unknown Bandits: Uncertainty Guidance in Learning and Decision Making

14Citations
Citations of this article
51Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In repeated decision problems for which it is possible to learn from experience, people should actively seek out uncertain options, rather than avoid ambiguity or uncertainty, in order to learn and improve future decisions. Research on human behavior in a variety of multiarmed-bandit tasks supports this prediction. Multiarmed-bandit tasks involve repeated decisions between options with initially unknown reward distributions and require a careful balance between learning about relatively unknown options (exploration) and obtaining high immediate rewards (exploitation). Resolving this exploration-exploitation dilemma optimally requires considering not only the estimated value of each option, but also the uncertainty in these estimations. Bayesian learning naturally quantifies uncertainty and hence provides a principled framework to study how humans resolve this dilemma. On the basis of computational modeling and behavioral results in bandit tasks, I argue that human learning, attention, and exploration are guided by uncertainty. These results support Bayesian theories of cognition and underpin the fundamental role of subjective uncertainty in both learning and decision making.

Cite

CITATION STYLE

APA

Speekenbrink, M. (2022). Chasing Unknown Bandits: Uncertainty Guidance in Learning and Decision Making. Current Directions in Psychological Science, 31(5), 419–427. https://doi.org/10.1177/09637214221105051

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free