Validation of [18F]fluorodeoxyglucose and positron emission tomography (PET) for the measurement of intestinal metabolism in pigs, and evidence of intestinal insulin resistance in patients with morbid obesity

41Citations
Citations of this article
50Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Aims/hypothesis: The role of the intestine in the pathogenesis of metabolic diseases is gaining much attention. We therefore sought to validate, using an animal model, the use of positron emission tomography (PET) in the estimation of intestinal glucose uptake (GU), and thereafter to test whether intestinal insulin-stimulated GU is altered in morbidly obese compared with healthy human participants. Methods: In the validation study, pigs were imaged using [ 18F]fluorodeoxyglucose ([18F]FDG) and the image-derived data were compared with corresponding ex vivo measurements in tissue samples and with arterial-venous differences in glucose and [18F]FDG levels. In the clinical study, GU was measured in different regions of the intestine in lean (n = 8) and morbidly obese (n = 8) humans at baseline and during euglycaemic hyperinsulinaemia. Results: PET- and ex vivo-derived intestinal values were strongly correlated and most of the fluorine-18-derived radioactivity was accumulated in the mucosal layer of the gut wall. In the gut wall of pigs, insulin promoted GU as determined by PET, the arterial-venous balance or autoradiography. In lean human participants, insulin increased GU from the circulation in the duodenum (from 1.3 ± 0.6 to 3.1 ± 1.1 μmol [100 g]-1 min-1, p < 0.05) and in the jejunum (from 1.1 ± 0.7 to 3.0 ± 1.5 μmol [100 g]-1 min -1, p < 0.05). Obese participants failed to show any increase in insulin-stimulated GU compared with fasting values (NS). Conclusions/ interpretation: Intestinal GU can be quantified in vivo by [18F]FDG PET. Intestinal insulin resistance occurs in obesity before the deterioration of systemic glucose tolerance. © 2013 Springer-Verlag Berlin Heidelberg.

Cite

CITATION STYLE

APA

Honka, H., Mäkinen, J., Hannukainen, J. C., Tarkia, M., Oikonen, V., Teräs, M., … Nuutila, P. (2013). Validation of [18F]fluorodeoxyglucose and positron emission tomography (PET) for the measurement of intestinal metabolism in pigs, and evidence of intestinal insulin resistance in patients with morbid obesity. Diabetologia, 56(4), 893–900. https://doi.org/10.1007/s00125-012-2825-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free