Landslide Occurrence Prediction Using Trainable Cascade Forward Network and Multilayer Perceptron

26Citations
Citations of this article
31Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Landslides are one of the dangerous natural phenomena that hinder the development in Penang Island, Malaysia. Therefore, finding the reliable method to predict the occurrence of landslides is still the research of interest. In this paper, two models of artificial neural network, namely, Multilayer Perceptron (MLP) and Cascade Forward Neural Network (CFNN), are introduced to predict the landslide hazard map of Penang Island. These two models were tested and compared using eleven machine learning algorithms, that is, Levenberg Marquardt, Broyden Fletcher Goldfarb, Resilient Back Propagation, Scaled Conjugate Gradient, Conjugate Gradient with Beale, Conjugate Gradient with Fletcher Reeves updates, Conjugate Gradient with Polakribiere updates, One Step Secant, Gradient Descent, Gradient Descent with Momentum and Adaptive Learning Rate, and Gradient Descent with Momentum algorithm. Often, the performance of the landslide prediction depends on the input factors beside the prediction method. In this research work, 14 input factors were used. The prediction accuracies of networks were verified using the Area under the Curve method for the Receiver Operating Characteristics. The results indicated that the best prediction accuracy of 82.89% was achieved using the CFNN network with the Levenberg Marquardt learning algorithm for the training data set and 81.62% for the testing data set.

Cite

CITATION STYLE

APA

Al-Batah, M. S., Alkhasawneh, M. S., Tay, L. T., Ngah, U. K., Hj Lateh, H., & Mat Isa, N. A. (2015). Landslide Occurrence Prediction Using Trainable Cascade Forward Network and Multilayer Perceptron. Mathematical Problems in Engineering, 2015. https://doi.org/10.1155/2015/512158

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free