Orbital angular momentum based intra- and interparticle entangled states generated via a quantum dot source

20Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

Abstract

Engineering single-photon states endowed with orbital angular momentum (OAM) is a powerful tool for quantum information photonic implementations. Indeed, due to its unbounded nature, OAM is suitable for encoding qudits, allowing a single carrier to transport a large amount of information. Most of the experimental platforms employ spontaneous parametric down-conversion processes to generate single photons, even if this approach is intrinsically probabilistic, leading to scalability issues for an increasing number of qudits. Semiconductor quantum dots (QDs) have been used to get over these limitations by producing on-demand pure and indistinguishable single-photon states, although only recently they have been exploited to create OAM modes. Our work employs a bright QD single-photon source to generate a complete set of quantum states for information processing with OAM-endowed photons. We first study hybrid intraparticle entanglement between OAM and polarization degrees of freedom of a single photon whose preparation was certified by means of Hong-Ou-Mandel visibility. Then, we investigate hybrid interparticle OAM-based entanglement by exploiting a probabilistic entangling gate. The performance of our approach is assessed by performing quantum state tomography and violating Bell inequalities. Our results pave the way for the use of deterministic sources for the on-demand generation of photonic high-dimensional quantum states.

Cite

CITATION STYLE

APA

Suprano, A., Zia, D., Pont, M., Giordani, T., Rodari, G., Valeri, M., … Sciarrino, F. (2023). Orbital angular momentum based intra- and interparticle entangled states generated via a quantum dot source. Advanced Photonics, 5(4). https://doi.org/10.1117/1.AP.5.4.046008

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free