Abstract
In this paper, we propose a brain tumor segmentation and classification method for multi-modality magnetic resonance imaging scans. The data from multi-modal brain tumor segmentation challenge (MICCAI BraTS 2013) are utilized which are co-registered and skull-stripped, and the histogram matching is performed with a reference volume of high contrast. From the preprocessed images, the following features are then extracted: intensity, intensity differences, local neighborhood and wavelet texture. The integrated features are subsequently provided to the random forest classifier to predict five classes: background, necrosis, edema, enhancing tumor and non-enhancing tumor, and then these class labels are used to hierarchically compute three different regions (complete tumor, active tumor and enhancing tumor). We performed a leave-one-out cross-validation and achieved 88% Dice overlap for the complete tumor region, 75% for the core tumor region and 95% for enhancing tumor region, which is higher than the Dice overlap reported from MICCAI BraTS challenge.
Author supplied keywords
Cite
CITATION STYLE
Usman, K., & Rajpoot, K. (2017). Brain tumor classification from multi-modality MRI using wavelets and machine learning. Pattern Analysis and Applications, 20(3), 871–881. https://doi.org/10.1007/s10044-017-0597-8
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.