Rates of nuclear fusion reactions in dense matter and their enhancement due to electron screening and internuclear many-body correlation are calculated by explicitly taking into account dielectric functions of relativistic and nonrelativistic electrons, screening potentials based on the Monte Carlo simulations, and interaction free energies in dense electron-screened binary-ionic-mixture fluids. Pycnonuclear reactions are predicted near fluid-solid transitions at high densities, where the total reaction rates in fluid and solid phases take on comparable values that are virtually independent of the temperature. Analytic expressions for the reaction rates are presented and are applied to dense carbon-oxygen matter in the white dwarf interiors near ignition conditions and to dense proton-deuteron matter in giant planets and brown dwarfs. Possibility of a laboratory detection of pycnonuclear reactions in ultrahigh-pressure metallic hydrogen near solidification is explored.
CITATION STYLE
Kitamura, H. (2000). Pycnonuclear Reactions in Dense Matter near Solidification. The Astrophysical Journal, 539(2), 888–901. https://doi.org/10.1086/309258
Mendeley helps you to discover research relevant for your work.