Broadband ac conductivity of conductor-polymer composites

Citations of this article
Mendeley users who have this article in their library.
Get full text
This PDF is freely available from an open access repository. It may not have been peer-reviewed.


The electrical conductivity of a composite model system formed by highly structured carbon black (CB) filled, within an amorphous polymer, poly(ethylene terephtalate) composite is studied. The dc conductivity as a function of CB content follows a scaling law of the type (Formula presented) yielding for the percolation concentration, (Formula presented) and for the exponent, (Formula presented). The analysis of the temperature dependence of the conductivity suggests that for temperatures larger than 45 K, conduction can be ascribed to thermal fluctuation induced tunneling of the charge carriers through the insulating layer of polymer separating two CB aggregates. At lower temperatures, conductivity becomes temperature independent, which is typical of conventional tunneling. The frequency dependence of the conductivity is also studied between dc and (Formula presented) Hz. By the introduction of a shift factor (Formula presented) a procedure for the construction of a master curve based on a “time-length equivalence principle” is proposed. Finally, a model is introduced to describe the frequency dependence of the conductivity of CB-filled composites based on the behavior of charge carriers placed in a fractal object. © 1998 The American Physical Society.




Connor, M. T., Roy, S., Ezquerra, T. A., & Baltá Calleja, F. J. (1998). Broadband ac conductivity of conductor-polymer composites. Physical Review B - Condensed Matter and Materials Physics, 57(4), 2286–2294.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free