The sustained expression of the MAFB transcription factor in human islet β-cells represents a distinct difference in mice. Moreover, mRNA expression of closely related and islet β-cell–enriched MAFA does not peak in humans until after 9 years of age. We show that the MAFA protein also is weakly produced within the juvenile human islet β-cell population and that MafB expression is postnatally restricted in mouse β-cells by de novo DNA methylation. To gain insight into how MAFB affects human β-cells, we developed a mouse model to ectopically express MafB in adult mouse β-cells using MafA transcriptional control sequences. Coexpression of MafB with MafA had no overt impact on mouse β-cells, suggesting that the human adult β-cell MAFA/MAFB heterodimer is functionally equivalent to the mouse MafA homodimer. However, MafB alone was unable to rescue the islet β-cell defects in a mouse mutant lacking MafA in β-cells. Of note, transgenic production of MafB in β-cells elevated tryptophan hydroxylase 1 mRNA production during pregnancy, which drives the serotonin biosynthesis critical for adaptive maternal β-cell responses. Together, these studies provide novel insight into the role of MAFB in human islet β-cells.
CITATION STYLE
Cyphert, H. A., Walker, E. M., Hang, Y., Dhawan, S., Haliyur, R., Bonatakis, L., … Stein, R. (2019). Examining how the MAFB transcription factor affects islet β-cell function postnatally. Diabetes, 68(2), 337–348. https://doi.org/10.2337/db18-0903
Mendeley helps you to discover research relevant for your work.