Examining how the MAFB transcription factor affects islet β-cell function postnatally

32Citations
Citations of this article
56Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The sustained expression of the MAFB transcription factor in human islet β-cells represents a distinct difference in mice. Moreover, mRNA expression of closely related and islet β-cell–enriched MAFA does not peak in humans until after 9 years of age. We show that the MAFA protein also is weakly produced within the juvenile human islet β-cell population and that MafB expression is postnatally restricted in mouse β-cells by de novo DNA methylation. To gain insight into how MAFB affects human β-cells, we developed a mouse model to ectopically express MafB in adult mouse β-cells using MafA transcriptional control sequences. Coexpression of MafB with MafA had no overt impact on mouse β-cells, suggesting that the human adult β-cell MAFA/MAFB heterodimer is functionally equivalent to the mouse MafA homodimer. However, MafB alone was unable to rescue the islet β-cell defects in a mouse mutant lacking MafA in β-cells. Of note, transgenic production of MafB in β-cells elevated tryptophan hydroxylase 1 mRNA production during pregnancy, which drives the serotonin biosynthesis critical for adaptive maternal β-cell responses. Together, these studies provide novel insight into the role of MAFB in human islet β-cells.

Cite

CITATION STYLE

APA

Cyphert, H. A., Walker, E. M., Hang, Y., Dhawan, S., Haliyur, R., Bonatakis, L., … Stein, R. (2019). Examining how the MAFB transcription factor affects islet β-cell function postnatally. Diabetes, 68(2), 337–348. https://doi.org/10.2337/db18-0903

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free