Novel criteria to classify ARDS severity using a machine learning approach

25Citations
Citations of this article
85Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Usually, arterial oxygenation in patients with the acute respiratory distress syndrome (ARDS) improves substantially by increasing the level of positive end-expiratory pressure (PEEP). Herein, we are proposing a novel variable [PaO2/(FiO2xPEEP) or P/FPE] for PEEP ≥ 5 to address Berlin’s definition gap for ARDS severity by using machine learning (ML) approaches. Methods: We examined P/FPE values delimiting the boundaries of mild, moderate, and severe ARDS. We applied ML to predict ARDS severity after onset over time by comparing current Berlin PaO2/FiO2 criteria with P/FPE under three different scenarios. We extracted clinical data from the first 3 ICU days after ARDS onset (N = 2738, 1519, and 1341 patients, respectively) from MIMIC-III database according to Berlin criteria for severity. Then, we used the multicenter database eICU (2014–2015) and extracted data from the first 3 ICU days after ARDS onset (N = 5153, 2981, and 2326 patients, respectively). Disease progression in each database was tracked along those 3 ICU days to assess ARDS severity. Three robust ML classification techniques were implemented using Python 3.7 (LightGBM, RF, and XGBoost) for predicting ARDS severity over time. Results: P/FPE ratio outperformed PaO2/FiO2 ratio in all ML models for predicting ARDS severity after onset over time (MIMIC-III: AUC 0.711–0.788 and CORR 0.376–0.566; eICU: AUC 0.734–0.873 and CORR 0.511–0.745). Conclusions: The novel P/FPE ratio to assess ARDS severity after onset over time is markedly better than current PaO2/FiO2 criteria. The use of P/FPE could help to manage ARDS patients with a more precise therapeutic regimen for each ARDS category of severity.

Cite

CITATION STYLE

APA

Sayed, M., Riaño, D., & Villar, J. (2021). Novel criteria to classify ARDS severity using a machine learning approach. Critical Care, 25(1). https://doi.org/10.1186/s13054-021-03566-w

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free