Kidney-targeting Smad7 gene transfer inhibits renal TGF-β/MAD homologue (SMAD) and nuclear factor κb (NF-κB) signalling pathways, and improves diabetic nephropathy in mice

117Citations
Citations of this article
37Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Aims/hypothesis: The TGF-β/MAD homologue (SMAD) and nuclear factor κB (NF-κB) signalling pathways have been shown to play a critical role in the development of renal fibrosis and inflammation in diabetic nephropathy. We therefore examined whether targeting these pathways by a kidney-targeting Smad7 gene transfer has therapeutic effects on renal lesions in the db/db mouse model of type 2 diabetes. Methods: We delivered Smad7 plasmids into the kidney of db/db mice using kidney-targeting, ultrasound-mediated, microbubble-inducible gene transfer. The histopathology, ultrastructural pathology and pathways of TGF-β/SMAD2/3-mediated fibrosis and NF-κB-dependent inflammation were evaluated. Results: In this mouse model of type 2 diabetes, Smad7 gene therapy significantly inhibited diabetic kidney injury, compared with mice treated with empty vectors. Symptoms inhibited included: (1) proteinuria and renal function impairment; (2) renal fibrosis such as glomerular sclerosis, tubulo-interstitial collagen matrix abundance and renal inflammation, including Inos (also known as Nos2), Il1b and Mcp1 (also known as Ccl2) upregulation, as well as macrophage infiltration; and (3) podocyte and endothelial cell injury as demonstrated by immunohistochemistry and/or electron microscopy. Further study demonstrated that the improvement of type 2 diabetic kidney injury by overexpression of Smad7 was associated with significantly inhibited local activation of the TGF-β/SMAD and NF-κB signalling pathways in the kidney. Conclusions/interpretation: Our results clearly demonstrate that kidney-targeting Smad7 gene transfer may be an effective therapy for type 2 diabetic nephropathy, acting via simultaneous modulation of the TGF-β/SMAD and NF-κB signalling pathways. © 2011 Springer-Verlag.

Cite

CITATION STYLE

APA

Ka, S. M., Yeh, Y. C., Huang, X. R., Chao, T. K., Hung, Y. J., Yu, C. P., … Chen, A. (2012). Kidney-targeting Smad7 gene transfer inhibits renal TGF-β/MAD homologue (SMAD) and nuclear factor κb (NF-κB) signalling pathways, and improves diabetic nephropathy in mice. Diabetologia, 55(2), 509–519. https://doi.org/10.1007/s00125-011-2364-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free