Clustering Longitudinal Data Using R: A Monte Carlo Study

9Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The analysis of change within subjects over time is an ever more important research topic. Besides modelling the individual trajectories, a related aim is to identify clusters of subjects within these trajectories. Various methods for analyzing these longitudinal trajectories have been proposed. In this paper we investigate the performance of three different methods under various conditions in a Monte Carlo study. The first method is based on the non-parametric k-means algorithm. The second is a latent class mixture model, and the third a method based on the analysis of change indices. All methods are available in R. Results show that the k-means method performs consistently well in recovering the known clustering structure. The mixture model method performs reasonably well, but the change indices method has problems with smaller data sets.

Cite

CITATION STYLE

APA

Verboon, P., & Pat-El, R. (2022). Clustering Longitudinal Data Using R: A Monte Carlo Study. Methodology, 18(2), 144–163. https://doi.org/10.5964/meth.7143

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free