This paper presents a new computational framework in electrical impedance tomography (EIT) for shape reconstruction based on the concept of moving morphable components (MMC). In the proposed framework, the shape reconstruction problem is solved in an explicit and geometrical way. Compared with the traditional pixel or shape-based solution framework, the proposed framework can incorporate more geometry and prior information into shape and topology optimization directly and therefore render the solution process more flexibility. It also has the afford potential to substantially reduce the computational burden associated with shape and topology optimization. The effectiveness of the proposed approach is tested with noisy synthetic data and experimental data, which demonstrates the most popular biomedical application of EIT: lung imaging. In addition, robustness studies of the proposed approach considering modeling errors caused by non-homogeneous background, varying initial guesses, differing numbers of candidate shape components, and differing exponent in the shape and topology description function are performed. The simulation and experimental results show that the proposed approach is tolerant to modeling errors and is fairly robust to these parameter choices, offering significant improvements in image quality in comparison to the conventional absolute reconstructions using smoothness prior regularization and total variation regularization.
CITATION STYLE
Liu, D., & Du, J. (2019). A Moving Morphable Components Based Shape Reconstruction Framework for Electrical Impedance Tomography. IEEE Transactions on Medical Imaging, 38(12), 2937–2948. https://doi.org/10.1109/TMI.2019.2918566
Mendeley helps you to discover research relevant for your work.