A family of invariants of smooth, oriented four-dimensional manifolds is defined via handle decompositions and the Kirby calculus of framed link diagrams. The invariants are parametrised by a pivotal functor from a spherical fusion category into a ribbon fusion category. A state sum formula for the invariant is constructed via the chain-mail procedure, so a large class of topological state sum models can be expressed as link invariants. Most prominently, the Crane-Yetter state sum over an arbitrary ribbon fusion category is recovered, including the nonmodular case. It is shown that the Crane-Yetter invariant for nonmodular categories is stronger than signature and Euler invariant. A special case is the four-dimensional untwisted Dijkgraaf–Witten model. Derivations of state space dimensions of TQFTs arising from the state sum model agree with recent calculations of ground state degeneracies in Walker-Wang models. Relations to different approaches to quantum gravity such as Cartan geometry and teleparallel gravity are also discussed.
CITATION STYLE
Bärenz, M., & Barrett, J. (2018). Dichromatic State Sum Models for Four-Manifolds from Pivotal Functors. Communications in Mathematical Physics, 360(2), 663–714. https://doi.org/10.1007/s00220-017-3012-9
Mendeley helps you to discover research relevant for your work.