Towards dynamic metabolic flux analysis in CHO cell cultures

105Citations
Citations of this article
313Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Chinese hamster ovary (CHO) cells are the most widely used mammalian cell line for biopharmaceutical production, with a total global market approaching $100 billion per year. In the pharmaceutical industry CHO cells are grown in fed-batch culture, where cellular metabolism is characterized by high glucose and glutamine uptake rates combined with high rates of ammonium and lactate secretion. The metabolism of CHO cells changes dramatically during a fed-batch culture as the cells adapt to a changing environment and transition from exponential growth phase to stationary phase. Thus far, it has been challenging to study metabolic flux dynamics in CHO cell cultures using conventional metabolic flux analysis techniques that were developed for systems at metabolic steady state. In this paper we review progress on flux analysis in CHO cells and techniques for dynamic metabolic flux analysis. Application of these new tools may allow identification of intracellular metabolic bottlenecks at specific stages in CHO cell cultures and eventually lead to novel strategies for improving CHO cell metabolism and optimizing biopharmaceutical process performance. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Cite

CITATION STYLE

APA

Ahn, W. S., & Antoniewicz, M. R. (2012, January). Towards dynamic metabolic flux analysis in CHO cell cultures. Biotechnology Journal. https://doi.org/10.1002/biot.201100052

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free