Spatial frameworks for robust estimation of yield gaps

64Citations
Citations of this article
151Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Food security interventions and policies need reliable estimates of crop production and the scope to enhance production on existing cropland. Here we assess the performance of two widely used ‘top-down’ gridded frameworks (Global Agro-ecological Zones and Agricultural Model Intercomparison and Improvement Project) versus an alternative ‘bottom-up’ approach (Global Yield Gap Atlas). The Global Yield Gap Atlas estimates extra production potential locally for a number of sites representing major breadbaskets and then upscales the results to larger spatial scales. We find that estimates from top-down frameworks are alarmingly unlikely, with estimated potential production being lower than current farm production at some locations. The consequences of using these coarse estimates to predict food security are illustrated by an example for sub-Saharan Africa, where using different approaches would lead to different prognoses about future cereal self-sufficiency. Our study shows that foresight about food security and associated agriculture research priority setting based on yield potential and yield gaps derived from top-down approaches are subject to a high degree of uncertainty and would benefit from incorporating estimates from bottom-up approaches.

Cite

CITATION STYLE

APA

Rattalino Edreira, J. I., Andrade, J. F., Cassman, K. G., van Ittersum, M. K., van Loon, M. P., & Grassini, P. (2021). Spatial frameworks for robust estimation of yield gaps. Nature Food, 2(10), 773–779. https://doi.org/10.1038/s43016-021-00365-y

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free