Animal models of diabetic neuropathy: Progress since 1960s

105Citations
Citations of this article
192Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Diabetic or peripheral diabetic neuropathy (PDN) is one of the major complications among some other diabetic complications such as diabetic nephropathy, diabetic retinopathy, and diabetic cardiomyopathy. The use of animal models in the research of diabetes and diabetic complications is very common when rats and mice are most commonly used for many reasons. A numbers of animal models of diabetic and PDN have been developed in the last several decades such as streptozotocin-induced diabetic rat models, conventional or genetically modified or high-fat diet-fed C57BL/Ks (db/db) mice models, streptozotocin-induced C57BL6/J and ddY mice models, Chinese hamster neuropathic model, rhesus monkey PDN model, spontaneously diabetic WBN/Kob rat model, L-fucose-induced neropathic rat model, partial sciatic nerve ligated rat model, nonobese diabetic (NOD) mice model, spontaneously induced Ins2 Akita mice model, leptin-deficient (ob/ob) mice model, Otsuka Long-Evans Tokushima Fatty (OLETF) rat model, surgically-induced neuropathic model, and genetically modified Spontaneously Diabetic Torii (SDT) rat model, none of which are without limitations. An animal model of diabetic or PDN should mimic the all major pathogeneses of human diabetic neuropathy. Hence, this review comparatively evaluates the animal models of diabetic and PDN which are developed since 1960s with their advantages and disadvantages to help diabetic research groups in order to more accurately choose an appropriate model to meet their specific research objectives. © 2013 Md. Shahidul Islam.

Cite

CITATION STYLE

APA

Islam, M. S. (2013). Animal models of diabetic neuropathy: Progress since 1960s. Journal of Diabetes Research. https://doi.org/10.1155/2013/149452

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free