Abstract
Microsomal prostaglandin E synthetase-1 (mPGES-1) is an inducible terminal enzyme for the production of prostaglandin E2 (PGE2). In experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, mPGES-1 is induced in vascular endothelial cells (VECs) around inflammatory foci and facilitates inflammation, demyelination, and paralysis. Therefore, we investigated the role of CD31-positive VECs in mPGES-1-mediated EAE aggravation using immunohistochemical analysis and imaging of wild-type (wt) and mPGES-1-deficient (mPGES-1−/−) mice. We demonstrated that EAE induction facilitated vascularity in inflammatory lesions in the spinal cord, and this was significantly higher in wt mice than in mPGES-1−/− mice. In addition, endothelial interleukin-1β (IL-1β) production was significantly higher in wt mice than in mPGES-1−/− mice. Moreover, endothelial PGE2 receptors (E-prostanoid (EP) receptors EP1–4) were expressed after EAE induction, and IL-1β was induced in EP receptor-positive VECs. Furthermore, IL-1 receptor 1 expression on VECs was increased upon EAE induction. Thus, increased vascularity is one mechanism involved in EAE aggravation induced by mPGES-1. Furthermore, mPGES-1 facilitated the autocrine function of VECs upon EP receptor induction and IL-1β production, modulating mPGES-1 induction in EAE.
Author supplied keywords
Cite
CITATION STYLE
Takemiya, T., Kawakami, M., & Takeuchi, C. (2018). Endothelial microsomal prostaglandin E synthetase-1 upregulates vascularity and endothelial interleukin-1β in deteriorative progression of experimental autoimmune encephalomyelitis. International Journal of Molecular Sciences, 19(11). https://doi.org/10.3390/ijms19113647
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.