Mutual coupling reduction of cross-dipole antenna for base stations by using a neural network approach

14Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

In this manuscript, a resonator layer is presented for the purpose of reducing the mutual coupling effect between each antenna element of a cross dipole antenna. In design processes, an artificial neural network approach was used for various resonator designs. In the operating frequency band of 2.2-2.7 GHz, 48 different 6 x 6 resonator layers were created and integrated into the cross dipole antenna to reduce transmission and improve isolation between each antenna elements. Moreover, when training an artificial neural network in the Matlab program, 48 different resonator layers were used with the return losses and transmission values of cross dipole antenna elements. After training process, eight unknown resonator designs were tested and accurate results were obtained. Finally, one of the resonator planes, which was obtained from the artificial neural network, was fabricated and experimentally tested, then an accurate result was obtained. This study provides a good solution, especially for improving isolation in multiport antenna systems, using an artificial neural network approach.

Cite

CITATION STYLE

APA

Ozdemir, E., Akgol, O., Alkurt, F. O., Karaaslan, M., Abdulkarim, Y. I., & Deng, L. (2020). Mutual coupling reduction of cross-dipole antenna for base stations by using a neural network approach. Applied Sciences (Switzerland), 10(1). https://doi.org/10.3390/app10010378

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free