Abstract
Pulses of rainfall are particularly pivotal in controlling plant physiological processes in ecosystems controlled by limited water, and the response of desert plants to rainfall is a key to understanding the responses of desert ecosystems to global climatic change. We used a portable photosynthesis system to measure the responses of the diurnal course of photosynthesis, light-response curves, and CO 2-response curves of two desert shrubs (Nitraria sphaerocarpa Maxim. and Calligonum mongolicum Turcz) to a rainfall pulse in a desert-oasis ecotone in northwestern China. The photosynthetic parameters, light- and CO 2-response curves differed significantly before and after the rainfall pulse. Their maximum net photosynthetic rate (P N) values were 23.27 and 32.92 μmol(CO 2) m -2 s -1 for N. sphaerocarpa and C. mongolicum, respectively, with corresponding maximum stomatal conductance (g s) values of 0.47 and 0.39 mol(H 2O) m -2 s -1. The P N of N. sphaerocarpa after the rainfall was 1.65 to 1.75 times the value before rainfall, whereas those of C. mongolicum increased to approximately 2 times the prerainfall value, demonstrating the importance of the desert plants response by improving their assimilation rate to precipitation patterns under a future climate. © 2012 Springer Science+Business Media B.V.
Author supplied keywords
Cite
CITATION STYLE
Liu, B., Zhao, W. Z., & Wen, Z. J. (2012). Photosynthetic response of two shrubs to rainfall pulses in desert regions of northwestern China. Photosynthetica, 50(1), 109–119. https://doi.org/10.1007/s11099-012-0015-9
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.