Glutamate receptor ion channel properties predict vulnerability to cytotoxicity in a transfected nonneuronal cell line

42Citations
Citations of this article
26Readers
Mendeley users who have this article in their library.

Abstract

Excessive activation of glutamate receptors is thought to play a critical role in neuronal excitotoxicity. To compare the cytotoxic potential of different glutamate receptor subtypes and correlate receptor biophysical properties with cytotoxicity, we have expressed recombinant receptors in human embryonic kidney 293 (HEK-293) cells. Survival of transfected cells was analyzed under conditions of defined agonist concentration and exposure time. For HEK-293 cells transfected with N-methyl-D-aspartate (NMDA) receptors, the EC50 for NMDA-induced cytotoxicity was 300 μM. Experiments using ion substitution, or cells expressing mutant NMDA receptors with low calcium permeability, suggested that both calcium and sodium influx through NMDA receptors contributed to cytotoxicity. In contrast, cytotoxicity was not observed in cells transfected with calcium permeable α-amino-3-hydroxy-5-methyl-4-isoxazole propionate- or kainate-type glutamate receptors even at saturating agonist concentrations, unless inhibitors of agonist-dependent desensitization were included. These results directly demonstrate that calcium permeability and desensitization kinetics play important roles in determining the excitotoxic potential of different glutamate receptor subtypes.

Cite

CITATION STYLE

APA

Raymond, L. A., Moshaver, A., Tingley, W. G., Shalaby, I., & Huganir, R. L. (1996). Glutamate receptor ion channel properties predict vulnerability to cytotoxicity in a transfected nonneuronal cell line. Molecular and Cellular Neurosciences, 7(2), 102–115. https://doi.org/10.1006/mcne.1996.0008

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free