Ambient noise induces independent shifts in call frequency and amplitude within the Lombard effect in echolocating bats

124Citations
Citations of this article
193Readers
Mendeley users who have this article in their library.

Abstract

The Lombard effect, an involuntary rise in call amplitude in response to masking ambient noise, represents one of the most efficient mechanisms to optimize signal-to-noise ratio. The Lombard effect occurs in birds and mammals, including humans, and is often associated with several other vocal changes, such as call frequency and duration. Most studies, however, have focused on noisedependent changes in call amplitude. It is therefore still largely unknown how the adaptive changes in call amplitude relate to associated vocal changes such as frequency shifts, how the underlying mechanisms are linked, and if auditory feedback from the changing vocal output is needed. Here, we examined the Lombard effect and the associated changes in call frequency in a highly vocal mammal, echolocating horseshoe bats.Weanalyzed howbandpassfiltered noise (BFN; bandwidth 20 kHz) affected their echolocation behavior when BFN was centered on different frequencies within their hearing range. Call amplitudes increased only when BFN was centered on the dominant frequency component of the bats' calls. In contrast, call frequencies increased for all but one BFN center frequency tested. Both amplitude and frequency rises were extremely fast and occurred in the first call uttered after noise onset, suggesting that no auditory feedback was required. The different effects that varying the BFN center frequency had on amplitude and frequency rises indicate different neural circuits and/or mechanisms underlying these changes.

Cite

CITATION STYLE

APA

Hage, S. R., Jiang, T., Berquist, S. W., Feng, J., & Metzner, W. (2013). Ambient noise induces independent shifts in call frequency and amplitude within the Lombard effect in echolocating bats. Proceedings of the National Academy of Sciences of the United States of America, 110(10), 4063–4068. https://doi.org/10.1073/pnas.1211533110

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free