AI governance: themes, knowledge gaps and future agendas

137Citations
Citations of this article
549Readers
Mendeley users who have this article in their library.

Abstract

Purpose: Following the surge of documents laying out organizations' ethical principles for their use of artificial intelligence (AI), there is a growing demand for translating ethical principles to practice through AI governance (AIG). AIG has emerged as a rapidly growing, yet fragmented, research area. This paper synthesizes the organizational AIG literature by outlining research themes and knowledge gaps as well as putting forward future agendas. Design/methodology/approach: The authors undertake a systematic literature review on AIG, addressing the current state of its conceptualization and suggesting future directions for AIG scholarship and practice. The review protocol was developed following recommended guidelines for systematic reviews and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Findings: The results of the authors’ review confirmed the assumption that AIG is an emerging research topic with few explicit definitions. Moreover, the authors’ review identified four themes in the AIG literature: technology, stakeholders and context, regulation and processes. The central knowledge gaps revealed were the limited understanding of AIG implementation, lack of attention to the AIG context, uncertain effectiveness of ethical principles and regulation, and insufficient operationalization of AIG processes. To address these gaps, the authors present four future AIG agendas: technical, stakeholder and contextual, regulatory, and process. Going forward, the authors propose focused empirical research on organizational AIG processes, the establishment of an AI oversight unit and collaborative governance as a research approach. Research limitations/implications: To address the identified knowledge gaps, the authors present the following working definition of AIG: AI governance is a system of rules, practices and processes employed to ensure an organization's use of AI technologies aligns with its strategies, objectives, and values, complete with legal requirements, ethical principles and the requirements set by stakeholders. Going forward, the authors propose focused empirical research on organizational AIG processes, the establishment of an AI oversight unit and collaborative governance as a research approach. Practical implications: For practitioners, the authors highlight training and awareness, stakeholder management and the crucial role of organizational culture, including senior management commitment. Social implications: For society, the authors review elucidates the multitude of stakeholders involved in AI governance activities and complexities related to balancing the needs of different stakeholders. Originality/value: By delineating the AIG concept and the associated research themes, knowledge gaps and future agendas, the authors review builds a foundation for organizational AIG research, calling for broad contextual investigations and a deep understanding of AIG mechanisms. For practitioners, the authors highlight training and awareness, stakeholder management and the crucial role of organizational culture, including senior management commitment.

Cite

CITATION STYLE

APA

Birkstedt, T., Minkkinen, M., Tandon, A., & Mäntymäki, M. (2023). AI governance: themes, knowledge gaps and future agendas. Internet Research. Emerald Publishing. https://doi.org/10.1108/INTR-01-2022-0042

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free