N-terminal truncation of the scrapie-associated form of PrP by lysosomal protease(s): implications regarding the site of conversion of PrP to the protease-resistant state

  • Caughey B
  • Raymond G
  • Ernst D
  • et al.
394Citations
Citations of this article
91Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Scrapie and related transmissible spongiform encephalopathies result in the accumulation of a protease-resistant form of an endogenous brain protein called PrP. As an approach to understanding the scrapie-associated modification of PrP, we have studied the processing and sedimentation properties of protease-resistant PrP (PrP-res) in scrapie-infected mouse neuroblastoma cells. Like brain-derived PrP-res, the neuroblastoma cell PrP-res aggregated in detergent lysates, providing evidence that the tendency to aggregate is an intrinsic property of PrP-res and not merely a secondary consequence of degenerative brain pathology. The PrP-res species had lower apparent molecular masses than the normal, protease-sensitive PrP species and were not affected by moderate treatments with proteinase K. This suggested that the PrP-res species were partially proteolyzed by the neuroblastoma cells. Immunoblot analysis of PrP-res with a panel of monospecific anti-PrP peptide sera confirmed that the PrP-res species were quantitatively truncated at the N terminus. The metabolic labeling of PrP-res in serum-free medium did not prevent the proteolysis of PrP-res, showing that the protease(s) involved was cellular rather than serum-derived. The PrP-res truncation was inhibited in intact cells by leupeptin and NH4Cl. This provided evidence that a lysosomal protease(s) was involved, and therefore, that PrP-res was translocated to lysosomes. When considered with other studies, these results imply that the conversion of PrP to the protease-resistant state occurs in the plasma membrane or along an endocytic pathway before PrP-res is exposed to endosomal and lysosomal proteases.

Cite

CITATION STYLE

APA

Caughey, B., Raymond, G. J., Ernst, D., & Race, R. E. (1991). N-terminal truncation of the scrapie-associated form of PrP by lysosomal protease(s): implications regarding the site of conversion of PrP to the protease-resistant state. Journal of Virology, 65(12), 6597–6603. https://doi.org/10.1128/jvi.65.12.6597-6603.1991

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free