Coordinate dependence of variability analysis

54Citations
Citations of this article
109Readers
Mendeley users who have this article in their library.

Abstract

Analysis of motor performance variability in tasks with redundancy affords insight about synergies underlying central nervous system (CNS) control. Preferential distribution of variability in ways that minimally affect task performance suggests sophisticated neural control. Unfortunately, in the analysis of variability the choice of coordinates used to represent multidimensional data may profoundly affect analysis, introducing an arbitrariness which compromises its conclusions. This paper assesses the influence of coordinates. Methods based on analyzing a covariance matrix are fundamentally dependent on an investigator's choices. Two reasons are identified: using anisotropy of a covariance matrix as evidence of preferential distribution of variability; and using orthogonality to quantify relevance of variability to task performance. Both are exquisitely sensitive to coordinates. Unless coordinates are known a priori, these methods do not support unambiguous inferences about CNS control. An alternative method uses a two-level approach where variability in task execution (expressed in one coordinate frame) is mapped by a function to its result (expressed in another coordinate frame). An analysis of variability in execution using this function to quantify performance at the level of results offers substantially less sensitivity to coordinates than analysis of a covariance matrix of execution variables. This is an initial step towards developing coordinate-invariant analysis methods for movement neuroscience © 2010 Sternad et al.

Cite

CITATION STYLE

APA

Sternad, D., Park, S. W., Müller, H., & Hogan, N. (2010). Coordinate dependence of variability analysis. PLoS Computational Biology, 6(4). https://doi.org/10.1371/journal.pcbi.1000751

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free