Bio-guided fractionation of stem bark extracts from phyllanthus muellarianus: Identification of phytocomponents with anti-cholinesterase activity

2Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

A combination of flash chromatography, solid phase extraction, high-performance liquid chromatography, and in vitro bioassays was used to isolate phytocomponents endowed with anticholinesterase activity in extract from Phyllanthus muellarianus. Phytocomponents responsible for the anti-cholinesterase activity of subfractions PMF1 and PMF4 were identified and re-assayed to confirm their activity. Magnoflorine was identified as an active phytocomponent from PMF1 while nitidine was isolated from PMF4. Magnoflorine was shown to be a selective inhibitor of human butyrylcholinesterase—hBChE (IC50 = 131 ± 9 µM and IC50 = 1120 ± 83 µM, for hBuChE and human acetylcholinesterase—hAChE, respectively), while nitidine showed comparable inhibitory potencies against both enzymes (IC50 = 6.68 ± 0.13 µM and IC50 = 5.31 ± 0.50 µM, for hBChE and hAChE, respectively). When compared with the commercial anti-Alzheimer drug galanthamine, nitidine was as potent as galanthamine against hAChE and one order of magnitude more potent against hBuChE. Furthermore, nitidine also showed significant, although weak, antiaggregating activity towards amyloid-β self-aggregation.

Cite

CITATION STYLE

APA

Naldi, M., Brusotti, G., Massolini, G., Andrisano, V., Temporini, C., & Bartolini, M. (2021). Bio-guided fractionation of stem bark extracts from phyllanthus muellarianus: Identification of phytocomponents with anti-cholinesterase activity. Molecules, 26(14). https://doi.org/10.3390/molecules26144376

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free