Abstract
Floods are one of the most severe and most frequent natural calamities. It causes enormous economic damage and even leads to higher mortality rates. Studies on damage detection of roads using artificial intelligence (AI) methods gained more attention currently, especially in the development of smart cities. Therefore, this study designs an optimal Fuzzy Wavelet Neural Network based Road Damage Detection (OFWNN-RDD) technique for Flooding Management. The OFWNN-RDD technique aims to exploit the remote sensing images to classify different kinds of roads. For noise removal process, the OFWNN-RDD technique utilizes Gabor filtering (GF) technique. In addition, the OFWNN-RDD technique uses the DenseNet121 model for feature vector generation with modified barnacles mating optimization (MBMO) based hyperparameter optimizer. Finally, FWNN image classification approach is used for road damage detection. The simulation values exhibit the supremacy of the OFWNN-RDD technique over other models with improved road damage detection accuracy of 98.56%.
Author supplied keywords
Cite
CITATION STYLE
Alamgeer, M., Alkahtani, H. K., Maashi, M., Othman, M., Hilal, A. M., Alsaid, M. I., … Alneil, A. A. (2023). Optimal Fuzzy Wavelet Neural Network Based Road Damage Detection. IEEE Access, 11, 61986–61994. https://doi.org/10.1109/ACCESS.2023.3283299
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.