Long procedure times and collateral damage remain challenges in high-intensity focused ultrasound (HIFU) medical procedures. Magnetic nanoparticles (mNPs) and gold nanoparticles (gNPs) have the potential to reduce the acoustic intensity and/or exposure time required in these procedures. In this research, we investigated relative advantages of using gNPs and mNPs during HIFU thermal-ablation procedures. Tissue-mimicking phantoms containing embedded thermocouples (TCs) and physiologically acceptable concentrations (0.0625% and 0.125%) of gNPs were sonicated at acoustic powers of 5.2 W, 9.2 W, and 14.5 W, for 30 s. It was observed that when the concentration of gNPs was doubled from 0.0625% to 0.125%, the temperature rise increased by 80% for a power of 5.2 W. For a fixed concentration (0.0625%), the energy absorption was 1.7 times greater for mNPs than gNPs for a power of 5.2 W. Also, for the power of 14.5 W, the sonication time required to generate a lesion volume of 50 mm3 decreased by 1.4 times using mNPs, compared with gNPs, at a concentration of 0.0625%. We conclude that mNPs are more likely than gNPs to produce a thermal enhancement in HIFU ablation procedures.
CITATION STYLE
Devarakonda, S. B., Myers, M. R., & Banerjee, R. K. (2018). Comparison of Heat Transfer Enhancement between Magnetic and Gold Nanoparticles during HIFU Sonication. Journal of Biomechanical Engineering, 140(8). https://doi.org/10.1115/1.4040120
Mendeley helps you to discover research relevant for your work.