Long-term in Vivo clearance of gadolinium-based AGuIX nanoparticles and their biocompatibility after systemic injection

156Citations
Citations of this article
118Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We previously reported the synthesis of gadolinium-based nanoparticles (NPs) denoted AGuIX (activation and guiding of irradiation by X-ray) NPs and demonstrated their potential as an MRI contrast agent and their efficacy as radiosensitizing particles during X-ray cancer treatment. Here we focus on the elimination kinetics of AGuIX NPs from the subcellular to whole-organ scale using original and complementary methods such as laser-induced breakdown spectroscopy (LIBS), intravital two-photon microscopy, inductively coupled plasma optical emission spectrometry (ICP-OES), transmission electron microscopy (TEM), and electrospray ionization mass spectrometry (ESI-MS). This combination of techniques allows the exact mechanism of AGuIX NPs elimination to be elucidated, including their retention in proximal tubules and their excretion as degraded or native NPs. Finally, we demonstrated that systemic AGuIX NP administration induced moderate and transient effects on renal function. These results provide useful and promising preclinical information concerning the safety of theranostic AGuIX NPs.

Cite

CITATION STYLE

APA

Sancey, L., Kotb, S., Truillet, C., Appaix, F., Marais, A., Thomas, E., … Tillement, O. (2015). Long-term in Vivo clearance of gadolinium-based AGuIX nanoparticles and their biocompatibility after systemic injection. ACS Nano, 9(3), 2477–2488. https://doi.org/10.1021/acsnano.5b00552

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free