Abstract
The heat resistance of Salmonella enterica serovar Typhi PF-724 and Listeria monocytogenes 2812 was determined in a commercial bologna batter. The heat inactivation of the two bacterial species was also studied in a semiautomatic pilot smokehouse under cooking conditions that reproduced an industrial bologna process. S. enterica serovar Typhi PF-724 was less heat resistant than L. monocytogenes 2812. The D-values (times required to reduce the population by 1 logarithmic cycle) for S. enterica serovar Typhi PF-724 ranged from 10.11 to 0.04 min for temperatures of 50 to 70°C, while for L. monocytogenes 2812, the D-values were 2.5-, 4.9-, 3.8-, 3.3-, and 2-fold higher at 50, 55, 60, 65, and 70°C, respectively, than for S. enterica serovar Typhi PF-724. However, the z-value (temperature required to reduce log D by 1 logarithmic cycle) for S. enterica serovar Typhi PF-724 (5.72°C) was not significantly different from the z-value for L. monocytogenes 2812 (7.04°C), indicating that a given increase in temperature would have a similar effect on the decimal reduction time for both bacterial species in that meat emulsion. Our data on experimentally inoculated batter also showed that processing bologna at a cooking-cooling cycle commonly used in the industry resulted in a minimum 5-log reduction for both S. enterica serovar Typhi PF-724 and L. monocytogenes 2812. Copyright ©, International Association for Food Protection.
Cite
CITATION STYLE
Sallami, L., Marcotte, M., Naim, F., Ouattara, B., Leblanc, C., & Saucier, L. (2006). Heat inactivation of Listeria monocytogenes and Salmonella enterica serovar Typhi in a typical bologna matrix during an industrial cooking-cooling cycle. Journal of Food Protection, 69(12), 3025–3030. https://doi.org/10.4315/0362-028X-69.12.3025
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.