Photomorphogenesis is a critical developmental process bridging light-regulated transcriptional reprogramming with morphological changes in organisms. Strikingly, the chromatin-based transcriptional control of photomorphogenesis remains poorly understood. Here, we show that the Arabidopsis (Arabidopsis thaliana) ortholog of ATP-dependent chromatin-remodeling factor AtINO80 represses plant photomorphogenesis. Loss of AtINO80 inhibited hypocotyl cell elongation and caused anthocyanin accumulation. Both light-induced genes and dark-induced genes were affected in the atino80 mutant. Genome-wide occupancy of the H2A.Z histone variant and levels of histone H3 were reduced in atino80. In particular, AtINO80 bound the gene body of ELONGATED HYPOCOTYL 5 (HY5), resulting in lower chromatin incorporations of H2A.Z and H3 at HY5 in atino80. Genetic analysis revealed that AtINO80 acts in a phytochrome B- and HY5-dependent manner in the regulation of photomorphogenesis. Together, our study elucidates a mechanism wherein AtINO80 modulates nucleosome density and H2A.Z incorporation and represses the transcription of light-related genes, such as HY5, to fine tune plant photomorphogenesis.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Yang, C., Yin, L., Xie, F., Ma, M., Huang, S., Zeng, Y., … Li, L. (2020). AtINO80 represses photomorphogenesis by modulating nucleosome density and H2A.Z incorporation in light-related genes. Proceedings of the National Academy of Sciences of the United States of America, 117(52), 33679–33688. https://doi.org/10.1073/PNAS.2001976117