Late Ordovician mass extinction caused by volcanism, warming, and anoxia, not cooling and glaciation

110Citations
Citations of this article
88Readers
Mendeley users who have this article in their library.

Abstract

The Ordovician saw major diversification in marine life abruptly terminated by the Late Ordovician mass extinction (LOME). Around 85% of species were eliminated in two pulses 1 m.y. apart. The first pulse, in the basal Hirnantian, has been linked to cooling and Gondwanan glaciation. The second pulse, later in the Hirnantian, is attributed to warming and anoxia. Previously reported mercury (Hg) spikes in Nevada (USA), South China, and Poland implicate an unknown large igneous province (LIP) in the crisis, but the timing of Hg loading has led to different interpretations of the LIP-extinction scenario in which volcanism causes cooling, warming, or both. We report close correspondence between Hg, Mo, and U anomalies, declines in enrichment factors of productivity proxies, and the two LOME pulses at the Ordovician-Silurian boundary stratotype (Dob's Linn, Scotland). These support an extinction scenario in which volcanogenic greenhouse gases caused warming around the Katian-Hirnantian boundary that led to expansion of a preexisting deepwater oxygen minimum zone, productivity collapse, and the first LOME pulse. Renewed volcanism in the Hirnantian stimulated further warming and anoxia and the second LOME pulse. Rather than being the odd-one-out of the "Big Five" extinctions with origins in cooling, the LOME is similar to the others in being caused by volcanism, warming, and anoxia.

Cite

CITATION STYLE

APA

Bond, D. P. G., & Grasby, S. E. (2020). Late Ordovician mass extinction caused by volcanism, warming, and anoxia, not cooling and glaciation. Geology, 48(8), 777–781. https://doi.org/10.1130/G47377.1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free