Abstract
Two recent experimental studies on the frictional behavior of synthetic gouge-bearing faults under the operation of pressure solution are compared. One is triaxial shear experiments on quartz gouge at high pressure-temperature hydrothermal conditions (Kanagawa et al., 2000), and the other is rotary shear experiments on halite gouge at atmospheric pressure and room temperature in the presence of methanol-water mixtures (Bos et al., 2000). In spite of quite different experimental settings and conditions, the results of these two series of experiments are strikingly similar; both cataclasis and pressure solution being active during the experiments, gouge strength rate-controlled by cataclasis, two different frictional behaviors of slip hardening and softening, slip hardening associated with gouge compaction, distributed deformation and wall-rock failure, slip softening associated with localized slip along the gouge - wall-rock interface, and the transition from slip-hardening to slip-softening behavior according to decreasing rate of pressure solution. Although there is a difference in velocity dependence of strength between quartz and halite gouges, these similarities clearly demonstrate the important effects of pressure solution on the frictional behavior of gouge-bearing faults. Copyright © The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences.
Cite
CITATION STYLE
Kanagawa, K. (2002). Frictional behavior of synthetic gouge-bearing faults under the operation of pressure solution. Earth, Planets and Space, 54(11), 1147–1152. https://doi.org/10.1186/BF03353316
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.