Structural stability, electronic structures, mechanical properties and debye temperature of transition metal impurities in tungsten: A first-principles study

30Citations
Citations of this article
33Readers
Mendeley users who have this article in their library.

Abstract

The structural stability, electronic structures, mechanical properties and Debye temperature of W-TM (TM = Cr, Cu, Fe, Mn, Mo and Ni, respectively) alloys have been investigated by first principles method. The lattice constant, cell volume, formation energy and cohesive energy of W-TM alloys are calculated. W-TM alloys still maintain bcc lattice, and have no structural phase transformation. It is shown that W-Mo and W-Mn alloys have better alloying ability with strong interactions between W and Mo/Mn atoms. However, the alloying ability of W-Cu, W-Fe, W-Cr and W-Ni is poor, and there is a weak chemical interaction between W and Cu/Cr/Fe/Ni atoms. Using the optimized lattice, the elastic constants are calculated, and the elastic moduli and other mechanical parameters are derived. Results show that the mechanical strength of W-TM alloys is lower than that of pure W, especially W-Cu and W-Ni alloys. However, the B/G ratio and Poisson’s ratio of W-TM alloys are higher than that of pure W, indicating that TM alloying can significantly improve the ductility of pure W. The metallicity of pure W can be enhanced by doping Fe or Mn, while doping Cr, Cu, Mo and Ni reduces the metallicity of pure W, of which W-Cu alloy has worst metallicity.

Cite

CITATION STYLE

APA

Jiang, D., Wu, M., Liu, D., Li, F., Chai, M., & Liu, S. (2019). Structural stability, electronic structures, mechanical properties and debye temperature of transition metal impurities in tungsten: A first-principles study. Metals, 9(9). https://doi.org/10.3390/met9090967

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free