Abstract
Removal of heavy metal pollutants from water is a challenge to water security and the environment. Therefore, in this work, multinary chalcogenide based nanoheterostructures such as ZnS/SnIn4S8nanoheterostructure with different loading amounts were prepared. The prepared nanoheterostructures were utilized as photocatalysts for chromium (Cr(vi)) photoreduction. The prepared nanoheterostructures were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), UV-Vis spectroscopy, dynamic light scattering (DLS), and X-ray photoelectron spectroscopy (XPS) and BET measurements. The absorption spectra of the prepared nanoheterostructures revealed that they are widely absorbed in the visible range with bandgap values 2.4-3.5 eV. The photocatalytic activities of prepared nanoheterostructures were studied toward the photoreduction of heavy metal, chromium (Cr(vi)), under irradiation of natural solar light. The ZnS/SnIn4S8(with ZnS molar ratio 20%) nanoheterostructures results showed a high photocatalytic activity (92.3%) after 120 min which could be attributed to its enhanced charge carrier separation with respect to the bare ZnS and SnIn4S8NPs. Also, the optoelectronic, valence-band XPS and electrochemical properties of the investigated photocatalysts were studied and the results revealed that the photocatalysts behave the step-scheme mechanism. The recyclability tests revealed a beneficial role of the surface charge in efficient regeneration of the photocatalysts for repeated use.
Cite
CITATION STYLE
Madkour, M., Abdelmonem, Y., Qazi, U. Y., Javaid, R., & Vadivel, S. (2021). Efficient Cr(vi) photoreduction under natural solar irradiation using a novel step-scheme ZnS/SnIn4S8nanoheterostructured photocatalysts. RSC Advances, 11(47), 29433–29440. https://doi.org/10.1039/d1ra04649g
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.