Nanotechnology in Medical Imaging

  • Cormode D
  • Skajaa T
  • Fayad Z
  • et al.
N/ACitations
Citations of this article
32Readers
Mendeley users who have this article in their library.

Abstract

Nanoparticles have become more and more prevalent in reports of novel contrast agents, especially for molecular imaging, the detection of cellular processes. The advantages of nanoparticles include their potency to generate contrast, the ease of integrating multiple properties, lengthy circulation times, and the possibility to include high payloads. As the chemistry of nanoparticles has improved over the past years, more sophisticated examples of nano-sized contrast agents have been reported, such as paramagnetic, macrophage targeted quantum dots or α v β 3 -targeted, MRI visible microemulsions that also carry a drug to suppress angiogenesis. The use of these particles is producing greater knowledge of disease processes and the effects of therapy. Along with their excellent properties, nanoparticles may produce significant toxicity, which must be minimized for (clinical) application. In this review we discuss the different factors that are considered when designing a nanoparticle probe and highlight some of the most advanced examples. Nanoparticles are a crucial part of the next generation of contrast agents for medical imaging. Herein we discuss the different aspects of nanoparticle probe design and highlight some of the most advanced examples.

Cite

CITATION STYLE

APA

Cormode, D. P., Skajaa, T., Fayad, Z. A., & Mulder, W. J. M. (2009). Nanotechnology in Medical Imaging. Arteriosclerosis, Thrombosis, and Vascular Biology, 29(7), 992–1000. https://doi.org/10.1161/atvbaha.108.165506

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free