Abstract
Motivation: Interactions between peptide fragments and protein receptors are vital to cell function yet difficult to experimentally determine in structural details of. As such, many computational methods have been developed to aid in peptide-protein docking or structure prediction. One such method is Rosetta FlexPepDock which consistently refines coarse peptide-protein models into sub-Ångström precision using Monte-Carlo simulations and statistical potentials. Deep learning has recently seen increased use in protein structure prediction, with graph neural networks used for protein model quality assessment. Results: Here, we introduce a graph neural network, InterPepScore, as an additional scoring term to complement and improve the Rosetta FlexPepDock refinement protocol. InterPepScore is trained on simulation trajectories from FlexPepDock refinement starting from thousands of peptide-protein complexes generated by a wide variety of docking schemes. The addition of InterPepScore into the refinement protocol consistently improves the quality of models created, and on an independent benchmark on 109 peptide-protein complexes its inclusion results in an increase in the number of complexes for which the top-scoring model had a DockQ-score of 0.49 (Medium quality) or better from 14.8% to 26.1%.
Cite
CITATION STYLE
Johansson-Åkhe, I., & Wallner, B. (2022). InterPepScore: A deep learning score for improving the FlexPepDock refinement protocol. Bioinformatics, 38(12), 3209–3215. https://doi.org/10.1093/bioinformatics/btac325
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.