Myt3 is a prosurvival factor in pancreatic islets; however, its role in islet-cell development is not known. Here, we demonstrate that myelin transcription factor 3 (Myt3) is expressed in migrating islet cells in the developing and neonatal pancreas and thus sought to determine whether Myt3 plays a role in this process. Using an ex vivo model of islet-cell migration, we demonstrate that Myt3 suppression significantly inhibits laminin-V/integrin-β1-dependent α-and β-cell migration onto 804G, and impaired 804G-induced F-actin and E-cadherin redistribution. Exposure of islets to proinflammatory cytokines, which suppress Myt3 expression, had a similar effect, whereas Myt3 overexpression partially rescued the migratory ability of the islet cells. We show that loss of islet-cell migration, due to Myt3 suppression or cytokine exposure, is independent of effects on islet-cell survival or proliferation. Myt3 suppression also had no effect on glucose-induced calcium influx, F-actin remodeling or insulin secretion by β-cells. RNA-sequencing (RNA-seq) analysis of transduced islets showed that Myt3 suppression results in the up-regulation of Tgfbi, a secreted diabetogenic factor thought to impair cellular adhesion. Exposure of islets to exogenous transforming growth factor β-induced (Tgfbi) impaired islet-cell migration similar to Myt3 suppression. Taken together, these data suggest a model by which cytokine-induced Myt3 suppression leads to Tgfbi de-repression and subsequently to impaired islet-cell migration, revealing a novel role for Myt3 in regulating islet-cell migration.
CITATION STYLE
Tennant, B. R., Chen, J., Shih, A. Z. L., Luciani, D. S., & Hoffman, B. G. (2015). Myt3 mediates laminin-V/integrin-β1-induced islet-cell migration via Tgfbi. Molecular Endocrinology, 29(9), 1254–1268. https://doi.org/10.1210/ME.2014-1387
Mendeley helps you to discover research relevant for your work.