Measuring energy expenditure in sub-adult and hatchling sea turtles via accelerometry

39Citations
Citations of this article
113Readers
Mendeley users who have this article in their library.

Abstract

Measuring the metabolic of sea turtles is fundamental to understanding their ecology yet the presently available methods are limited. Accelerometry is a relatively new technique for estimating metabolic rate that has shown promise with a number of species but its utility with air-breathing divers is not yet established. The present study undertakes laboratory experiments to investigate whether rate of oxygen uptake (V̇o 2) at the surface in active sub-adult green turtles Chelonia mydas and hatchling loggerhead turtles Caretta caretta correlates with overall dynamic body acceleration (ODBA), a derivative of acceleration used as a proxy for metabolic rate. Six green turtles (25-44 kg) and two loggerhead turtles (20 g) were instrumented with tri-axial acceleration logging devices and placed singly into a respirometry chamber. The green turtles were able to submerge freely within a 1.5 m deep tank and the loggerhead turtles were tethered in water 16 cm deep so that they swam at the surface. A significant prediction equation for mean V̇o 2 over an hour in a green turtle from measures of ODBA and mean flipper length (R 2 = 0.56) returned a mean estimate error across turtles of 8.0%. The range of temperatures used in the green turtle experiments (22-30°C) had only a small effect on V̇o 2. A V̇o 2-ODBA equation for the loggerhead hatchling data was also significant (R 2 = 0.67). Together these data indicate the potential of the accelerometry technique for estimating energy expenditure in sea turtles, which may have important applications in sea turtle diving ecology, and also in conservation such as assessing turtle survival times when trapped underwater in fishing nets. © 2011 Halsey et al.

Cite

CITATION STYLE

APA

Halsey, L. G., Jones, T. T., Jones, D. R., Liebsch, N., & Booth, D. T. (2011). Measuring energy expenditure in sub-adult and hatchling sea turtles via accelerometry. PLoS ONE, 6(8). https://doi.org/10.1371/journal.pone.0022311

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free