A pH-dependent cluster of charges in a conserved cryptic pocket on flaviviral envelopes

3Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Flaviviruses are enveloped viruses which include human pathogens that are predomi-nantly transmitted by mosquitoes and ticks. Some, such as dengue virus, exhibit the phenomenon of antibody-dependent enhancement (ADE) of disease, making vaccine-based routes of fighting infections problematic. The pH-dependent conformational change of the envelope (E) protein required for fusion between the viral and endosomal membranes is an attractive point of inhibition by antivi-rals as it has the potential to diminish the effects of ADE. We examined six flaviviruses by employing large-scale molecular dynamics (MD) simulations of raft systems that represent a substantial portion of the flaviviral envelope. We utilised a benzene-mapping approach that led to a discovery of shared hotspots and conserved cryptic sites. A cryptic pocket previously shown to bind a deter-gent molecule exhibited strain-specific characteristics. An alternative conserved cryptic site at the E protein domain interfaces showed a consistent dynamic behaviour across flaviviruses and contained a conserved cluster of ionisable residues. Constant-pH simulations revealed cluster and domain-interface disruption under low pH conditions. Based on this, we propose a cluster-dependent mechanism that addresses inconsistencies in the histidine-switch hypothesis and highlights the role of cluster protonation in orchestrating the domain dissociation pivotal for the formation of the fusogenic trimer.

Cite

CITATION STYLE

APA

Zuzic, L., Marzinek, J. K., Anand, G. S., Warwicker, J., & Bond, P. J. (2023). A pH-dependent cluster of charges in a conserved cryptic pocket on flaviviral envelopes. ELife, 12. https://doi.org/10.7554/eLife.82447

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free