Algae Cultivation as Measure for the Sanitation of Organic Waste—A Case Study Based on the Alga Galdieria sulphuraria Grown on Food Waste Hydrolysate in a Continuous Flow Culture

0Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

Abstract

Due to its growth under harsh acidic conditions, the microalga Galdieria sulphuraria may offer the opportunity to combine sanitation and the utilization of organic waste streams. To further deepen the knowledge of alternative waste treatment strategies that allow for holistic utilization, the control and removal of microbial contaminants via non-sterile heterotrophic G. sulphuraria on food waste hydrolysate were investigated in a continuous flow bioreactor culture. Furthermore, a substrate reservoir and harvested biomass were stored under non-sterile conditions over a period of 12 days. Despite the non-sterile conditions, the microbial load of the biomass could be kept under control. Neither the pathogen Salmonella sp. nor the coliform bacteria Escherichia coli could be found. Only nine counts per g of biomass were found for species belonging to Enterococcus spp., Enterobacteriacae, and moulds. Aerobic spore formers were counted with 2700 counts per g of biomass. Most of the aerobic mesophilic counts were formed by yeasts (1.5 × 106 vs. 1.3 × 106 counts per g biomass). The results revealed that, when using acidic growth conditions, contamination will not take over the culture; thus, the sterilization of waste materials can be skipped. It is assumed that such an approach can result in efficient processes for future waste-based bioeconomy strategies.

Cite

CITATION STYLE

APA

Pleissner, D., & Händel, N. (2023). Algae Cultivation as Measure for the Sanitation of Organic Waste—A Case Study Based on the Alga Galdieria sulphuraria Grown on Food Waste Hydrolysate in a Continuous Flow Culture. Sustainability (Switzerland), 15(19). https://doi.org/10.3390/su151914313

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free