Multineuronal spike sequences repeat with millisecond precision

12Citations
Citations of this article
53Readers
Mendeley users who have this article in their library.

Abstract

Cortical microcircuits are nonrandomly wired by neurons. As a natural consequence, spikes emitted by microcircuits are also nonrandomly patterned in time and space. One of the prominent spike organizations is a repetition of fixed patterns of spike series across multiple neurons. However, several questions remain unsolved, including how precisely spike sequences repeat, how the sequences are spatially organized, how many neurons participate in sequences, and how different sequences are functionally linked. To address these questions, we monitored spontaneous spikes of hippocampal CA3 neurons ex vivo using a high-speed functional multineuron calcium imaging technique that allowed us to monitor spikes with millisecond resolution and to record the location of spiking and nonspiking neurons. Multineuronal spike sequences were overrepresented in spontaneous activity compared to the statistical chance level. Approximately 75% of neurons participated in at least one sequence during our observation period. The participants were sparsely dispersed and did not show specific spatial organization. The number of sequences relative to the chance level decreased when larger time frames were used to detect sequences. Thus, sequences were precise at the millisecond level. Sequences often shared common spikes with other sequences; parts of sequences were subsequently relayed by following sequences, generating complex chains of multiple sequences. © 2013 Matsumoto, Ishikawa, Matsuki and Ikegaya.

Cite

CITATION STYLE

APA

Matsumoto, K., Ishikawa, T., Matsuki, N., & Ikegaya, Y. (2013). Multineuronal spike sequences repeat with millisecond precision. Frontiers in Neural Circuits, (JUNE). https://doi.org/10.3389/fncir.2013.00112

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free