Indoor positioning services have become necessary in many situations. Radio frequency (RF) signals are suitable for being used for positioning because of their ubiquity and imperceptibility. This paper utilizes the information from the baseband of a Bluetooth low energy (BLE) transceiver for angle estimation and signal strength for distance estimation. The scheme constitutes a single-anchor based solution to calculate the position of a client. It significantly reduces the cost of installation by avoiding traditional methods like multilateration or triangulation that require three or more anchors, even in a small space. To improve the performance, we design a fusion algorithm based on a Kalman filter to integrate measurements of the anchor station and simplified pedestrian dead reckoning (PDR) results from the client. Experiments show that the proposed solution estimates positions in high precision without initial user location or heading information. The mean error of the implementation is less than 1 m and can be improved to less than 0.5 m with a precise ranging measurement.
CITATION STYLE
Ye, F., Chen, R., Guo, G., Peng, X., Liu, Z., & Huang, L. (2019). A Low-Cost Single-Anchor Solution for Indoor Positioning Using BLE and Inertial Sensor Data. IEEE Access, 7, 162439–162453. https://doi.org/10.1109/ACCESS.2019.2951281
Mendeley helps you to discover research relevant for your work.