Overexpression and characterization of a Ca2+ activated thermostable β-glucosidase with high ginsenoside Rb1 to ginsenoside 20(S)-Rg3 bioconversion productivity

58Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The thermostable β-glucosidase gene from Thermotoga petrophila DSM 13995 was cloned and overexpressed in Escherichia coli. The activity of the recombinant β-glucosidase was 21 U/mL in the LB medium. Recombinant β-glucosidase was purified, and its molecular weight was approximately 81 kDa. The optimal activity was at pH 5.0 and 90 °C, and the thermostability of the enzyme was improved by Ca2+. The β-glucosidase had high selectivity for cleaving the outer and inner glucopyranosyl moieties at the C-20 carbon of ginsenoside Rb1, which produced the pharmacologically active minor ginsenoside 20(S)-Rg3. In a reaction at 90 °C and pH 5.0, 10 g/L of ginsenoside Rb1 was transformed into 6.93 g/L of Rg3 within 90 min, with a corresponding molar conversion of 97.9 %, and Rg3 productivity of 4620 mg/L/h. This study is the first report of a GH3-family enzyme that used Ca2+ to improve its thermostability, and it is the first report on the high substrate concentration bioconversion of ginsenoside Rb1 to ginsenoside 20(S)-Rg3 by using thermostable β-glucosidase under high temperature.

Cite

CITATION STYLE

APA

Xie, J., Zhao, D., Zhao, L., Pei, J., Xiao, W., Ding, G., & Wang, Z. (2015). Overexpression and characterization of a Ca2+ activated thermostable β-glucosidase with high ginsenoside Rb1 to ginsenoside 20(S)-Rg3 bioconversion productivity. Journal of Industrial Microbiology and Biotechnology, 42(6), 839–850. https://doi.org/10.1007/s10295-015-1608-7

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free