Abstract
More than 90% of the cases of congenital adrenal hyperplasia are caused by mutations of the CYP21 gene. Approximately 75% of the defective CYP21 genes are generated through intergenic recombination, termed apparent gene conversion, from the neighboring CYP21P pseudogene. Among them, mutation of the aberrant splicing donor site of IVS2 -12A/C>G at nucleotide (nt) 655 is believed to be a result derived from this mechanism and is the most prevalent case among all ethnic groups. However, mutation of 707-714delGAGACTAC rarely exists alone, although this locus is a distance of 53 nt away from IVS2 -12A/C>G. From the molecular characterization of the mutation of IVS2 - 12A/C>G combined with 707-714delGAGACTAC in patients with congenital adrenal hyperplasia, we found that it appeared to be in a 3.2- rather than a 3.7-kb fragment generated by Taq I digestion in a PCR product of the CYP21 gene. Interestingly, the 5′ end region of such a CYP21 haplotype had CYP21P-specific sequences. Our results indicate that the coexistence of these two mutations is caused by deletion of the CYP21P, XA, RP2, and C4B genes and intergenic recombination in the C4-CYP21 repeat module. Surprisingly, this kind of the haplotype of the mutated CYP21 gene has not been reported as a gene deletion.
Cite
CITATION STYLE
Lee, H. H., Chang, S. F., Tsai, F. J., Tsai, L. P., & Lin, C. Y. (2003). Mutation of IVS2-12A/C>G in combination with 707-714delGAGACTAC in the CYP21 gene is caused by deletion of the C4-CYP21 repeat module with steroid 21-hydroxylase deficiency. Journal of Clinical Endocrinology and Metabolism, 88(6), 2726–2729. https://doi.org/10.1210/jc.2003-030047
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.