Immunocytochemical studies reveal novel neural structures in nemertean pilidium larvae and provide evidence for incorporation of larval components into the juvenile nervous system

21Citations
Citations of this article
31Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Introduction: Nemertea is one of the least studied lophotrochozoan phyla concerning neurogenesis. The sparse data available do not unambiguously allow for answering questions with respect to the neural groundplan of the phylum or the fate of larval neural structures during metamorphosis. In order to contribute to this issue, we studied neurotransmitter distribution during development of the pilidiophoran Lineus albocinctus Verrill, 1900.Results: Two serotonin-like immunoreactive (lir) neurons are present in the anterior part of the apical plate. They send numerous processes into the four lobes of the pilidium larva, where they form a complex subepithelial nerve net. All four larval lobes are underlain by a marginal neurite bundle, which is associated with numerous serotonin-lir monociliated perikarya. A serotonin-lir oral nerve ring encircles the stomach sphincter and is associated with few serotonin-lir conical cells. Two suboral neurites descend from the oral nerve ring and merge with the marginal neurite bundle. The oral nerve ring and the suboral neurites contain the mollusk-specific VD1/RPD2 α-neuropeptide. The lateral lobes of the larva have three and the anterior and the posterior lobes two VD1/RPD2-lir marginal neurite bundles. The lobar FMRFamide-lir plexus of Lineus albocinctus is much more complex than previously described for any pilidium larva. It includes a circumesophageal neurite that descends along each side of the larval esophagus and together with the inner marginal neurite bundle gives rise to the lobar plexus of the lateral lobes. An outer FMRFamide-lir marginal neurite bundle with numerous associated FMRFamide-lir marginal sensory cells surrounds all four lobes. FMRFamide-lir structures are absent in the larval apical region. The oral nerve ring and the two suboral serotonin-lir neurites are incorporated into the juvenile nervous system.Conclusion: Our study confirms the presence of serotonin-lir components in the apical region of the pilidium larva of Lineus albocinctus and thus contradicts an earlier study on the same species. We show that the nervous system of pilidium larvae, especially the FMRFamide-lir components, is much more complex than previously assumed. The presence of the VD1/RPD2-α-neuropeptide indicates that this compound may have been part of the lophotrochozoan neural groundplan. © 2013 Hindinger et al.; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Hindinger, S., Schwaha, T., & Wanninger, A. (2013). Immunocytochemical studies reveal novel neural structures in nemertean pilidium larvae and provide evidence for incorporation of larval components into the juvenile nervous system. Frontiers in Zoology, 10(1). https://doi.org/10.1186/1742-9994-10-31

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free