Abstract
Using first-principles theory, we investigated the most stable configuration for the Rh dopant on a MoSe2 monolayer, and the interaction of the Rh-doped MoSe2 (Rh-MoSe2) monolayer with four toxic gases (CO, NO, NO2 and SO2) to exploit the potential application of the Rh-MoS2 monolayer as a gas sensor or adsorbent. Based on adsorption behavior comparison with other 2D adsorbents and desorption behavior analysis, we assume that the Rh-MoSe2 monolayer is a desirable adsorbent for CO, NO and NO2 storage or removal given the larger adsorption energy (Ead) of -2.00, -2.56 and -1.88 eV, respectively, compared with other materials. In the meanwhile, the Rh-MoSe2 monolayer is a good sensing material for SO2 detection according to its desirable adsorption and desorption behaviors towards the target molecule. Our theoretical calculation would provide a first insight into the TM-doping effect on the structural and electronic properties of the MoSe2 monolayer, and shed light on the application of Rh-MoSe2 for the sensing or disposal of common toxic gases.
Cite
CITATION STYLE
Cui, H., Zhang, G., Zhang, X., & Tang, J. (2019). Rh-doped MoSe2 as a toxic gas scavenger: A first-principles study. Nanoscale Advances, 1(2), 772–780. https://doi.org/10.1039/c8na00233a
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.