Virulence strategies of the dominant USA300 lineage of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA)

117Citations
Citations of this article
199Readers
Mendeley users who have this article in their library.

Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) poses a serious threat to worldwide health. Historically, MRSA clones have strictly been associated with hospital settings, and most hospital-associated MRSA (HA-MRSA) disease resulted from a limited number of virulent clones. Recently, MRSA has spread into the community causing disease in otherwise healthy people with no discernible contact with healthcare environments. These community-associated MRSA clones (CA-MRSA) are phylogenetically distinct from traditional HA-MRSA clones, and CA-MRSA strains seem to exhibit hypervirulence and more efficient host: host transmission. Consequently, CA-MRSA clones belonging to the USA300 lineage have become dominant sources of MRSA infections in North America. The rise of this successful USA300 lineage represents an important step in the evolution of emerging pathogens and a great deal of effort has been exerted to understand how these clones evolved. Here, we review much of the recent literature aimed at illuminating the source of USA300 success and broadly categorize these findings into three main categories: newly acquired virulence genes, altered expression of common virulence determinants and alterations in protein sequence that increase fitness. We argue that none of these evolutionary events alone account for the success of USA300, but rather their combination may be responsible for the rise and spread of CA-MRSA. © 2012 Federation of European Microbiological Societies.

Cite

CITATION STYLE

APA

Thurlow, L. R., Joshi, G. S., & Richardson, A. R. (2012, June). Virulence strategies of the dominant USA300 lineage of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA). FEMS Immunology and Medical Microbiology. https://doi.org/10.1111/j.1574-695X.2012.00937.x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free